01531nas a2200133 4500008004100000245010800041210006900149260000900218520098900227653002301216100001501239700001901254856012401273 2022 eng d00aCombating False Information by Sharing the Truth: A Study on the Spread of Fact-checks on Social Media0 aCombating False Information by Sharing the Truth A Study on the  c20223 aMisinformation on social media has become a horrendous problem in our society. Fact-checks on information often fall behind the diffusion of misinformation, which can lead to negative impacts on society. This research studies how different factors may affect the spread of fact-checks over the internet. We collected a dataset of fact-checks in a six-month period and analyzed how they spread on Twitter. The spread of fact-checks is measured by the total retweet count. The factors/variables include the truthfulness rating, topic of information, source credibility, etc. The research identifies truthfulness rating as a significant factor: conclusive fact-checks (either true or false) tend to be shared more than others. In addition, the source credibility, political leaning, and the sharing count also affect the spread of fact-checks. The findings of this research provide practical insights into accelerating the spread of the truth in the battle against misinformation online.10aBusiness Analytics1 aLi, Jiexun1 aChang, Xiaohui u/biblio/combating-false-information-sharing-truth-study-spread-fact-checks-social-media01524nas a2200133 4500008004100000245010400041210006900145260000900214520098900223653002301212100001501235700001901250856012101269 2022 eng d00aCombating Misinformation by Sharing the Truth: a Study on the Spread of Fact-Checks on Social Media0 aCombating Misinformation by Sharing the Truth a Study on the Spr c20223 aMisinformation on social media has become a horrendous problem in our society. Fact-checks on information often fall behind the diffusion of misinformation, which can lead to negative impacts on society. This research studies how different factors may affect the spread of fact-checks over the internet. We collected a dataset of fact-checks in a six-month period and analyzed how they spread on Twitter. The spread of fact-checks is measured by the total retweet count. The factors/variables include the truthfulness rating, topic of information, source credibility, etc. The research identifies truthfulness rating as a significant factor: conclusive fact-checks (either true or false) tend to be shared more than others. In addition, the source credibility, political leaning, and the sharing count also affect the spread of fact-checks. The findings of this research provide practical insights into accelerating the spread of the truth in the battle against misinformation online.10aBusiness Analytics1 aLi, Jiexun1 aChang, Xiaohui u/biblio/combating-misinformation-sharing-truth-study-spread-fact-checks-social-media00505nas a2200121 4500008004100000245008200041210006900123260000900192653003200201100001500233700001600248856011900264 2022 eng d00aMeasuring Destabilization and Consolidation in Scientific Knowledge Evolution0 aMeasuring Destabilization and Consolidation in Scientific Knowle c202210aStrategy & Entrepreneurship1 aLi, Jiexun1 aChen, Jiyao u/biblio/measuring-destabilization-and-consolidation-scientific-knowledge-evolution00673nas a2200181 4500008004100000245009400041210006900135260002300204653000800227653002300235653001200258653003200270100001600302700001500318700001700333700001500350856012600365 2020 eng d00aImpact of Team Size on Technological Contributions: Unpacking Disruption and Development0 aImpact of Team Size on Technological Contributions Unpacking Dis aVancouver CAc202010aBIS10aBusiness Analytics10aFinance10aStrategy & Entrepreneurship1 aChen, Jiyao1 aShao, Rong1 aFan, Shaokun1 aLi, Jiexun u/biblio/impact-team-size-technological-contributions-unpacking-disruption-and-development02320nas a2200157 4500008004100000245009900041210006900140260000900209300001400218490000700232520173700239653002301976100001501999700001902014856012902033 2020 eng d00aImproving Mobile Health Apps Usage: A Quantitative Study on mPower Data of Parkinson's Disease0 aImproving Mobile Health Apps Usage A Quantitative Study on mPowe c2020 a399–4200 v343 aPurpose
The emergence of mobile health (mHealth) products has created a capability of monitoring and managing the health of patients with chronic diseases. These mHealth technologies would not be beneficial unless they are adopted and used by their target users. This study identifies key factors affecting the usage of mHealth apps based on user usage data collected from an mHealth app.

Design/methodology/approach

Using a data set collected from an mHealth app named mPower, developed for patients with Parkinson’s disease (PD), this paper investigated the effects of disease diagnosis, disease progression, and mHealth app difficulty level on app usage, while controlling for user information. App usage is measured by five different activity counts of the app.

Findings
The results across five measures of mHealth app usage vary slightly. On average, previous professional diagnosis and high user performance scores encourage user participation and engagement, while disease progression hinders app usage.

Research limitations/implications
The findings potentially provide insights into better design and promotion of mHealth products and improve the capability of health management of patients with chronic diseases.

Originality/value
Studies on the mHealth app usage are critical but sparse because large-scale and reliable mHealth app usage data are limited. Unlike earlier works based solely on survey data, this research used a large user usage data collected from an mHealth app to study key factors affecting app usage. The methods presented in this study can serve as a pioneering work for the design and promotion of mHealth technologies.10aBusiness Analytics1 aLi, Jiexun1 aChang, Xiaohui u/biblio/improving-mobile-health-apps-usage-quantitative-study-mpower-data-parkinsons-disease01160nas a2200157 4500008004100000245007000041210006900111260000900180300001200189490000800201520062900209653002300838100001900861700001500880856010700895 2019 eng d00aBusiness Performance Prediction in Location-based Social Commerce0 aBusiness Performance Prediction in Locationbased Social Commerce c2019 a112-1230 v1263 aSocial commerce and location-based services provide a data platform for coexisting and competing businesses in geographical neighborhoods. Our research is aimed at mining data from such platforms to gain valuable insights for better support to strategic and operational business decisions. We develop a computational framework for predicting business performance that takes into account both intrinsic (e.g., attributes) and extrinsic (e.g., competitions) factors. Our experiments on synthetic and real datasets demonstrated superiority of a hybrid prediction model that adopts both link-based and context-based assumptions.10aBusiness Analytics1 aChang, Xiaohui1 aLi, Jiexun u/biblio/business-performance-prediction-location-based-social-commerce00552nas a2200169 4500008004100000245006300041210006200104260000900166653000800175653002300183653001700206100001500223700001600238700001300254700001600267856009900283 2018 eng d00aMaking Sense of Organization Dynamics Using Text Analysis.0 aMaking Sense of Organization Dynamics Using Text Analysis c201810aBIS10aBusiness Analytics10aSupply Chain1 aLi, Jiexun1 aWu, Zhaohui1 aZhu, Bin1 aXu, Kaiquan u/biblio/making-sense-organization-dynamics-using-text-analysis00422nas a2200121 4500008004100000245004500041210004300086260002800129653003200157100001500189700001600204856008000220 2017 eng d00aA dynamic measure of knowledge evolution0 adynamic measure of knowledge evolution aAtlanta, Georgia,c201710aStrategy & Entrepreneurship1 aLi, Jiexun1 aChen, Jiyao u/biblio/dynamic-measure-knowledge-evolution00544nas a2200157 4500008004100000245006500041210006500106260002300171653000800194653002300202653001700225100001500242700001600257700001300273856010000286 2015 eng d00aMining Hidden Organizational Structures from Meeting Records0 aMining Hidden Organizational Structures from Meeting Records aPhiladelphiac201510aBIS10aBusiness Analytics10aSupply Chain1 aLi, Jiexun1 aWu, Zhaohui1 aZhu, Bin u/biblio/mining-hidden-organizational-structures-meeting-records00559nas a2200145 4500008004100000245008200041210006900123260003100192653000800223653002300231100001500254700001200269700001300281856011900294 2014 eng d00aCollective opinion classification: A global consistency maximization approach0 aCollective opinion classification A global consistency maximizat aAukland, New Zealandc201410aBIS10aBusiness Analytics1 aLi, Jiexun1 aLi, Xin1 aZhu, Bin u/biblio/collective-opinion-classification-global-consistency-maximization-approach00644nas a2200157 4500008004100000245012300041210006900164260000900233653000800242100001700250700002300267700001500290700002400305700001900329856013800348 2014 eng d00aEvaluation of a hospital admission prediction model adding coded chief complaint data using neural network methodology0 aEvaluation of a hospital admission prediction model adding coded c201410aBIS1 aHandly, Neal1 aThompson, David, A1 aLi, Jiexun1 aChuirazzi, David, M1 aVenkat, Arvind u/biblio/evaluation-hospital-admission-prediction-model-adding-coded-chief-complaint-data-using-neural00536nas a2200145 4500008004100000245006700041210006700108260003200175653000800207100001500215700002500230700001500255700001600270856010400286 2014 eng d00aMining knowledge sharing processes in online discussion forums0 aMining knowledge sharing processes in online discussion forums aBig Island, HI. U.S.Ac201410aBIS1 aWang, Alan1 aWang, Harry, Jiannan1 aLi, Jiexun1 aFan, Weiguo u/biblio/mining-knowledge-sharing-processes-online-discussion-forums00528nas a2200133 4500008004100000245007800041210006900119260002900188653000800217100001600225700002500241700001500266856011300281 2013 eng d00aDiscovering Consumer Health Expressions from Consumer-Contributed Content0 aDiscovering Consumer Health Expressions from ConsumerContributed aWashington DC, USAc201310aBIS1 aJiang, Ling1 aYang, Christopher, C1 aLi, Jiexun u/biblio/discovering-consumer-health-expressions-consumer-contributed-content00541nas a2200145 4500008004100000245007500041210006900116260002300185653000800208100001500216700001500231700002500246700001600271856010800287 2013 eng d00aFinding patterns for effective knowledge sharing in online communities0 aFinding patterns for effective knowledge sharing in online commu aMilan, Italyc201310aBIS1 aLi, Jiexun1 aWang, Alan1 aWang, Harry, Jiannan1 aFan, Weiguo u/biblio/finding-patterns-effective-knowledge-sharing-online-communities00515nas a2200145 4500008004100000245006600041210006600107260002500173653000800198100001500206700001500221700001500236700001500251856010300266 2013 eng d00aIdentifying hidden community elites in online social networks0 aIdentifying hidden community elites in online social networks aTianjin, Chinac201310aBIS1 aHu, Daning1 aLi, Jiexun1 aYang, Xuan1 aYan, Jiaqi u/biblio/identifying-hidden-community-elites-online-social-networks00536nas a2200133 4500008004100000245008300041210006900124260003200193653000800225100001400233700002500247700001500272856011500287 2012 eng d00aA Comparative Study of Smoking Cessation Intervention Programs on Social Media0 aComparative Study of Smoking Cessation Intervention Programs on  aCollege Park, MD, USAc201210aBIS1 aZhang, Mi1 aYang, Christopher, C1 aLi, Jiexun u/biblio/comparative-study-smoking-cessation-intervention-programs-social-media00671nas a2200181 4500008004100000245011700041210006900158260000900227300001200236490000700248653000800255100001600263700001600279700001500295700002300310700002600333856013000359 2012 eng d00aDiscovering target groups in social networking sites: An effective method for maximizing joint influential power0 aDiscovering target groups in social networking sites An effectiv c2012 a318-3340 v1110aBIS1 aXu, Kaiquan1 aGuo, Xitong1 aLi, Jiexun1 aLau, Raymond, Y.K.1 aLiao, Stephan, Shaoyi u/biblio/discovering-target-groups-social-networking-sites-effective-method-maximizing-joint-000553nas a2200145 4500008004100000245008100041210006900122260002600191653000800217100001600225700001500241700001700256700002300273856011100296 2012 eng d00aAn effective method for discovering target groups on social networking sites0 aeffective method for discovering target groups on social network aShanghai, Chinac201210aBIS1 aXu, Kaiquan1 aLi, Jiexun1 aLiao, Shaoyi1 aLau, Raymond, Y.K. u/biblio/effective-method-discovering-target-groups-social-networking-sites00600nas a2200157 4500008004100000245009400041210006900135260002500204653000800229100001600237700001300253700001500266700001800281700001600299856012700315 2012 eng d00aExploiting Semantic Structure for Mapping User-specified Form Terms to SNOMED CT Concepts0 aExploiting Semantic Structure for Mapping Userspecified Form Ter aMiami, FL, USAc201210aBIS1 aKhare, Ritu1 aAn, Yuan1 aLi, Jiexun1 aSong, Il-Yeol1 aHu, Xiaohua u/biblio/exploiting-semantic-structure-mapping-user-specified-form-terms-snomed-ct-concepts00556nas a2200157 4500008004100000245008300041210006900124260000900193300001600202490000700218653000800225100001600233700001500249700001600264856011800280 2012 eng d00aIdentifying valuable customers on social network sites for profit maximization0 aIdentifying valuable customers on social network sites for profi c2012 a13009-130180 v3910aBIS1 aXu, Kaiquan1 aLi, Jiexun1 aSong, Yuxia u/biblio/identifying-valuable-customers-social-network-sites-profit-maximization-000600nas a2200169 4500008004100000245009300041210006900134260000900203300001200212490000600224653000800230100001500238700001200253700001500265700002100280856012900301 2012 eng d00aSemantic-enhanced models to support timely admission prediction at emergency departments0 aSemanticenhanced models to support timely admission prediction a c2012 a161-1720 v110aBIS1 aLi, Jiexun1 aGuo, L.1 aHandly, N.1 aThompson, D., A. u/biblio/semantic-enhanced-models-support-timely-admission-prediction-emergency-departments-000510nas a2200133 4500008004100000245007400041210006900115260002700184653000800211100002500219700001500244700001300259856010400272 2012 eng d00aTowards an Intelligent Approach to Extracting Data for Process Mining0 aTowards an Intelligent Approach to Extracting Data for Process M aOrlando, FL, USAc201210aBIS1 aWang, Harry, Jiannan1 aLi, Jiexun1 aBai, Xue u/biblio/towards-intelligent-approach-extracting-data-process-mining00501nas a2200121 4500008004100000245008300041210006900124260002500193653000800218100001500226700001500241856012300256 2011 eng d00aCriminal identity resolution using social behavior and relationship attributes0 aCriminal identity resolution using social behavior and relations aBeijing, Chinac201110aBIS1 aLi, Jiexun1 aWang, Alan u/biblio/criminal-identity-resolution-using-social-behavior-and-relationship-attributes00708nas a2200157 4500008004100000245018500041210006900226260002600295653000800321100001700329700001500346700002300361700001400384700002000398856013200418 2011 eng d00aDerivation of hospital admission prediction models based on coded chief complaint, demographic, patient acuity and emergency department (ED) operational data available at ED triage0 aDerivation of hospital admission prediction models based on code aBoston, MA, USAc201110aBIS1 aHandly, Neal1 aLi, Jiexun1 aThompson, David, A1 aVenkat, A1 aChuirazzi, D, M u/biblio/derivation-hospital-admission-prediction-models-based-coded-chief-complaint-demographic00530nas a2200157 4500008004100000245006600041210006600107260000900173300001200182490000700194653000800201100001500209700002100224700001900245856010800264 2011 eng d00aIdentity matching using personal and social identity features0 aIdentity matching using personal and social identity features c2011 a101-1130 v1310aBIS1 aLi, Jiexun1 aWang, Alan, Gang1 aChen, Hsinchun u/biblio/identity-matching-using-personal-and-social-identity-features-000555nas a2200157 4500008004100000245008300041210006900124260000900193300001200202490000700214653000800221100001600229700002100245700001500266856011600281 2011 eng d00aMining comparative opinions from customer reviews for competitive intelligence0 aMining comparative opinions from customer reviews for competitiv c2011 a743-7540 v5010aBIS1 aXu, Kaiquan1 aLiao, Stephan, S1 aLi, Jiexun u/biblio/mining-comparative-opinions-customer-reviews-competitive-intelligence-000463nas a2200133 4500008004100000245005300041210005300094260002700147653000800174100001600182700001500198700002600213856009000239 2011 eng d00aSentiment Community Detection in Social Networks0 aSentiment Community Detection in Social Networks aSeattle, WA, USAc201110aBIS1 aXu, Kaiquan1 aLi, Jiexun1 aLiao, Stephen, Shaoyi u/biblio/sentiment-community-detection-social-networks00533nas a2200133 4500008004100000245008800041210006900129260002600198653000800224100001900232700001500251700001900266856011400285 2010 eng d00aDiscourse Analysis of the Question-Answering Service of the Internet Public Library0 aDiscourse Analysis of the QuestionAnswering Service of the Inter aBoston, MA, USAc201010aBIS1 aPoole, Erik, V1 aLi, Jiexun1 aPark, Jung-Ran u/biblio/discourse-analysis-question-answering-service-internet-public-library00598nas a2200169 4500008004100000245009300041210006900134260000900203300001200212490000700224653000800231100001200239700002000251700001500271700001500286856012700301 2010 eng d00aGene function prediction with gene interaction networks: a context graph kernel approach0 aGene function prediction with gene interaction networks a contex c2010 a119-1280 v1410aBIS1 aLi, Xin1 aChen, Hshinchun1 aLi, Jiexun1 aZhang, Zhu u/biblio/gene-function-prediction-gene-interaction-networks-context-graph-kernel-approach-000622nas a2200169 4500008004100000245010500041210006900146260000900215300001200224490000600236653000800242100001500250700002400265700001500289700001500304856013300319 2010 eng d00aA policy-based process mining framework: Mining business policy texts for discovering process models0 apolicybased process mining framework Mining business policy text c2010 a169-1880 v810aBIS1 aLi, Jiexun1 aWang, Harry, Jianan1 aZhang, Zhu1 aZhao, Leon u/biblio/policy-based-process-mining-framework-mining-business-policy-texts-discovering-process-000520nas a2200145 4500008004100000245006500041210006500106260002700171653000800198100002000206700001500226700001800241700001800259856009700277 2009 eng d00aAnalyzing Writing Styles of Bloggers with Different Opinions0 aAnalyzing Writing Styles of Bloggers with Different Opinions aPhoenix, AZ, USAc200910aBIS1 aPark, Thomas, H1 aLi, Jiexun1 aZhao, Haozhen1 aChau, Michaul u/biblio/analyzing-writing-styles-bloggers-different-opinions00487nas a2200133 4500008004100000245006300041210006200104260002900166653000800195100001500203700001500218700001700233856010300250 2009 eng d00aHospital admission prediction using pre-hospital variables0 aHospital admission prediction using prehospital variables aWashington DC, USAc200910aBIS1 aLi, Jiexun1 aGuo, Lifan1 aHandly, Neal u/biblio/hospital-admission-prediction-using-pre-hospital-variables00670nas a2200181 4500008004100000245012500041210006900166260000900235300001200244490000700256653000800263100001200271700002000283700001500303700001500318700002300333856013200356 2009 eng d00aManaging knowledge in light of its evolution process: An empirical study on citation network-based patent classification0 aManaging knowledge in light of its evolution process An empirica c2009 a129-1530 v2610aBIS1 aLi, Xin1 aChen, Hshinchun1 aZhang, Zhu1 aLi, Jiexun1 aNunamaker, Jay, F. u/biblio/managing-knowledge-light-its-evolution-process-empirical-study-citation-network-based-000598nas a2200181 4500008004100000245007700041210006900118260000900187300001400196490000700210653000800217100001900225700001700244700001500261700001800276700001500294856010700309 2009 eng d00aSentiment analysis of Chinese documents: From sentence to document level0 aSentiment analysis of Chinese documents From sentence to documen c2009 a2474-24870 v6010aBIS1 aZhang, Changli1 aZeng, Daniel1 aLi, Jiexun1 aWang, Fei-Yue1 aZuo, Wanli u/biblio/sentiment-analysis-chinese-documents-sentence-document-level-000513nas a2200133 4500008004100000245007300041210006900114260003300183653000800216100001600224700001800240700001500258856010600273 2009 eng d00aVisualizing the intellectual structure with paper-reference matrices0 aVisualizing the intellectual structure with paperreference matri aAtlantic City, NJ, USAc200910aBIS1 aZhang, Jian1 aChen, Chaomei1 aLi, Jiexun u/biblio/visualizing-intellectual-structure-paper-reference-matrices-100534nas a2200157 4500008004100000245007300041210006900114260000900183300001400192490000700206653000800213100001600221700001800237700001500255856010600270 2009 eng d00aVisualizing the Intellectual Structure with Paper-Reference Matrices0 aVisualizing the Intellectual Structure with PaperReference Matri c2009 a1153-11600 v1510aBIS1 aZhang, Jian1 aChen, Chaomei1 aLi, Jiexun u/biblio/visualizing-intellectual-structure-paper-reference-matrices-000461nas a2200133 4500008004100000245005300041210005200094260002500146653000800171100001500179700002100194700001900215856009300234 2008 eng d00aPRM-based identity matching using social context0 aPRMbased identity matching using social context aTaipei, Taiwanc200810aBIS1 aLi, Jiexun1 aWang, Gang, Alan1 aChen, Hsinchun u/biblio/prm-based-identity-matching-using-social-context00528nas a2200145 4500008004100000245006800041210006800109260002400177653000800201100001500209700002500224700001500249700001500264856010300279 2008 eng d00aProcess component identification from business policy documents0 aProcess component identification from business policy documents aYunnan, Chinac200810aBIS1 aLi, Jiexun1 aWang, Harry, Jiannan1 aZhang, Zhu1 aZhao, Leon u/biblio/process-component-identification-business-policy-documents00540nas a2200145 4500008004100000245007300041210006900114260002400183653000800207100001500215700002500230700001500255700001500270856010900285 2008 eng d00aRelation-centric task identification for policy-based process mining0 aRelationcentric task identification for policybased process mini aParis, Francec200810aBIS1 aLi, Jiexun1 aWang, Harry, Jiannan1 aZhang, Zhu1 aZhao, Leon u/biblio/relation-centric-task-identification-policy-based-process-mining00499nas a2200133 4500008004100000245006700041210006700108260002400175653000800199100001500207700002400222700001600246856010300262 2008 eng d00aStylometric feature selection for assessing review helpfulness0 aStylometric feature selection for assessing review helpfulness aParis, Francec200810aBIS1 aLi, Jiexun1 aMacDonald, Craig, M1 aZheng, Rong u/biblio/stylometric-feature-selection-assessing-review-helpfulness00420nas a2200133 4500008004100000245004300041210004300084260002600127653000800153100001500161700001300176700001800189856007900207 2008 eng d00aTheme creation for digital collections0 aTheme creation for digital collections aBerlin, Germanyc200810aBIS1 aLi, Jiexun1 aXia, Lin1 aZhou, Xiaohua u/biblio/theme-creation-digital-collections00603nas a2200145 4500008004100000245010700041210006900148260004600217653000800263100001200271700001900283700001500302700001500317856012500332 2007 eng d00aAuto patent classification using citation network information: An experimental study in nanotechnology0 aAuto patent classification using citation network information An aVancouver, British Columbia, Canadac200710aBIS1 aLi, Xin1 aChen, Hsinchun1 aZhang, Zhu1 aLi, Jiexun u/biblio/auto-patent-classification-using-citation-network-information-experimental-study00624nas a2200169 4500008004100000245010200041210006900143260000900212300001500221490000600236653000800242100001700250700001900267700001500286700001800301856013500319 2007 eng d00aComplex problem solving: A case study on identity matching based on social contextual information0 aComplex problem solving A case study on identity matching based  c2007 aArticle 310 v810aBIS1 aXu, Jennifer1 aWang, Alan, G.1 aLi, Jiexun1 aChau, Michaul u/biblio/complex-problem-solving-case-study-identity-matching-based-social-contextual-information-000565nas a2200145 4500008004100000245009100041210006900132260002700201653000800228100001200236700001500248700001900263700001500282856012200297 2007 eng d00aGraph kernel-based learning for gene function prediction from gene interaction network0 aGraph kernelbased learning for gene function prediction from gen aFremont, CA, USAc200710aBIS1 aLi, Xin1 aZhang, Zhu1 aChen, Hsinchun1 aLi, Jiexun u/biblio/graph-kernel-based-learning-gene-function-prediction-gene-interaction-network00679nas a2200181 4500008004100000245012900041210006900170260000900239300001400248490000700262653000800269100001500277700001500292700001200307700002200319700001900341856013700360 2007 eng d00aLarge-scale regulatory network analysis from microarray data: Modified Bayesian network learning and association rule mining0 aLargescale regulatory network analysis from microarray data Modi c2007 a1207-12250 v4310aBIS1 aHuang, Zan1 aLi, Jiexun1 aSu, Hua1 aWatts, George, S.1 aChen, Hsinchun u/biblio/large-scale-regulatory-network-analysis-microarray-data-modified-bayesian-network-learning-000606nas a2200145 4500008004100000245010200041210006900143260003500212653000800247100001500255700002500270700001500295700001500310856013500325 2007 eng d00aMining business policy texts for discovering process models: A framework and some initial results0 aMining business policy texts for discovering process models A fr aMontreal, Quebec, Canadac200710aBIS1 aLi, Jiexun1 aWang, Harry, Jiannan1 aZhang, Zhu1 aZhao, Leon u/biblio/mining-business-policy-texts-discovering-process-models-framework-and-some-initial-results00594nas a2200169 4500008004100000245008400041210006900125260000900194300001200203490000700215653000800222100001500230700001200245700001900257700002600276856012200302 2007 eng d00aOptimal search-based gene subset selection for gene array cancer classification0 aOptimal searchbased gene subset selection for gene array cancer  c2007 a398-4050 v1110aBIS1 aLi, Jiexun1 aSu, Hua1 aChen, Hsinchun1 aFutscher, Bernard, W. u/biblio/optimal-search-based-gene-subset-selection-gene-array-cancer-classification-000575nas a2200145 4500008004100000245009800041210006900139260002700208653000800235100001500243700001200258700001200270700001900282856012800301 2006 eng d00aA Bayesian framework of integrating gene functional relations from heterogeneous data sources0 aBayesian framework of integrating gene functional relations from aPhoenix, AZ, USAc200610aBIS1 aLi, Jiexun1 aLi, Xin1 aSu, Hua1 aChen, Hsinchun u/biblio/bayesian-framework-integrating-gene-functional-relations-heterogeneous-data-sources00649nas a2200181 4500008004100000245011900041210006900160260000900229300001200238490000700250653000800257100001600265700001500281700001900296700001500315700001200330856012500342 2006 eng d00aA framework of authorship identification for online messages: Writing style features and classification techniques0 aframework of authorship identification for online messages Writi c2006 a378-3930 v5710aBIS1 aZheng, Rong1 aLi, Jiexun1 aChen, Hsinchun1 aHuang, Zan1 aQin, Yi u/biblio/framework-authorship-identification-online-messages-writing-style-features-and-000673nas a2200181 4500008004100000245012800041210006900169260000900238300001400247490000700261653000800268100001500276700001200291700001200303700001900315700002500334856013200359 2006 eng d00aA framework of integrating gene functional relations from heterogeneous data sources: An experiment on Arabidopsis thaliana0 aframework of integrating gene functional relations from heteroge c2006 a2037-20430 v2210aBIS1 aLi, Jiexun1 aLi, Xin1 aSu, Hua1 aChen, Hsinchun1 aGalbraith, David, W. u/biblio/framework-integrating-gene-functional-relations-heterogeneous-data-sources-experiment-000422nas a2200157 4500008004100000245003500041210003500076260000900111300001000120490000700130653000800137100001500145700001600160700001900176856006900195 2006 eng d00aFrom fingerprint to writeprint0 aFrom fingerprint to writeprint c2006 a76-820 v4910aBIS1 aLi, Jiexun1 aZheng, Rong1 aChen, Hsinchun u/biblio/fingerprint-writeprint-000460nas a2200121 4500008004100000245006300041210006300104260002700167653000800194100001500202700002100217856010000238 2006 eng d00aIdentity matching based on probabilistic relational models0 aIdentity matching based on probabilistic relational models aAcapulco, Mexicoc200610aBIS1 aLi, Jiexun1 aWang, Gang, Alan u/biblio/identity-matching-based-probabilistic-relational-models00566nas a2200145 4500008004100000245008400041210006900125260002700194653000800221100001500229700001200244700001900256700002500275856012000300 2006 eng d00aOptimal search-based gene subset selection for microarray cancer classification0 aOptimal searchbased gene subset selection for microarray cancer  aPhoenix, AZ, USAc200610aBIS1 aLi, Jiexun1 aSu, Hua1 aChen, Hsinchun1 aFutscher, Bernard, W u/biblio/optimal-search-based-gene-subset-selection-microarray-cancer-classification00468nas a2200133 4500008004100000245006100041210006100102260002000163653000800183100001500191700001200206700001900218856009700237 2005 eng d00aOptimal search based gene selection for cancer prognosis0 aOptimal search based gene selection for cancer prognosis aOmaha, NEc200510aBIS1 aLi, Jiexun1 aSu, Hua1 aChen, Hsinchun u/biblio/optimal-search-based-gene-selection-cancer-prognosis00666nas a2200229 4500008004100000245004700041210004600088260002700134653000800161100001700169700001900186700002100205700001400226700001400240700001400254700001500268700001500283700001700298700002100315700001400336856008600350 2003 eng d00aGenescene: Biomedical text and data mining0 aGenescene Biomedical text and data mining aHouston, TX, USAc200310aBIS1 aLeroy, Gondy1 aChen, Hsinchun1 aMartinez, Jessie1 aEggers, S1 aFalsey, R1 aKislin, K1 aHuang, Zan1 aLi, Jiexun1 aXu, Jennifer1 aMcDonald, Daniel1 aNg, Gavin u/biblio/genescene-biomedical-text-and-data-mining00543nas a2200145 4500008004100000245008100041210006900122260002400191653000800215100001800223700001500241700001400256700001600270856011100286 2002 eng d00aDiscovering association rules with degrees of support and implication (ARsi)0 aDiscovering association rules with degrees of support and implic aGent, Belgiumc200210aBIS1 aChen, Guoqing1 aLi, Jiexun1 aYan, Peng1 aKerre, E, E u/biblio/discovering-association-rules-degrees-support-and-implication-arsi00560nas a2200133 4500008004100000245009900041210006900140260003100209653000800240100001200248700001800260700001500278856013300293 2002 eng d00aInfluence and conditional influence -- New interestingness measures in association rule mining0 aInfluence and conditional influence New interestingness measures aMelbourne, Australiac200210aBIS1 aLiu, De1 aChen, Guoqing1 aLi, Jiexun u/biblio/influence-and-conditional-influence-new-interestingness-measures-association-rule-mining00420nas a2200121 4500008004100000245005000041210004700091260003100138653000800169100001500177700001800192856008800210 2002 eng d00aA SAR-based interesting rule mining algorithm0 aSARbased interesting rule mining algorithm aNew Orleans, LA, USAc200210aBIS1 aLi, Jiexun1 aChen, Guoqing u/biblio/sar-based-interesting-rule-mining-algorithm00562nas a2200133 4500008004100000245009900041210006900140260003100209653000800240100001500248700001800263700001200281856013500293 2001 eng d00aInfluence and conditional influence -- New interestingness measures in association rule mining0 aInfluence and conditional influence New interestingness measures aMelbourne, Australiac200110aBIS1 aLi, Jiexun1 aChen, Guoqing1 aLiu, De u/biblio/influence-and-conditional-influence-new-interestingness-measures-association-rule-mining-0